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Introduction

Qarda is MITREOSTREC-style quegion arswering
system. In recen years we have beenabe to apply
only a smal effort to the TREC QA acivity,
aporoximakly  six  person-weeks  this  year.
(Accadingly, much of this discussion is plagarized
from prior system de<riptions.) We mack a number
of smal improvemerts to the system this year,
including exparding our use of Wordnet  The
systemOsnformaion retrieval wrapper now performs
iteratve query relaxaton in order to improve
documert retrieval. We also experimerted with an ad
hoc mears of OlwostingOthe maximum ertropy model
usedto score cardidate answersin order to improve its
rarking ahlity.

1. TREC-15 system d escription

Underlying architecture

Qanda uses a gereral computational infrastructure for
human language techhology called the Annotation
Management System (AMS). AMS is a flexible
library for pairwise interactons between language
processors, based on the Catalyst infrastructure usedin
previous verdons of Qanda (Burger 2004,
Burger & Mardis 2002, Nyberg etal. 2004). AMS
provides an extersible wrapper between a consistent
intermal programming model for language processors
and the wide range of ways the language procesor can
be invoked as well as the wide range of possible
amotation formats and storage types Philosophically,
it is similar to IBMOsUIMA infragtructure (Ferrucci &
Lally 2004), without the berefits and drawbacks
associated with the strong programming assumptions
that UIM A makes

Major system components

Qanda has a by now barmal QA architecture, which
proceed in several phases Quedions arearalyzedfor
expected arswer types documerts are retrieved using
an IR system ard are then procesed by various
taggers to find ertities of the expected types in
contexts that match the quegion. Qanda is composed
of several dozen componerts connecied via AMSK
below we de<ribe eachof the major phasesin turn.

¥ Common guegion and document processing: This
consists of several steps: tokenzaion, sertence
boundary detecton, part of speech tagging
(Rataparkhi  1996), morphological aralysis
(Minnen et al. 2001), fixed phrase tagging (see
below), ard entity tagging. For the latter, we use
Phrag (Burger et al. 2002), an HMM-based tagger,
to idertify named perons, locatons and
organizatons, aswell astemporal expressions.

¥ Quedion analyss: After the common initial phase
of amalysis, quegions arechunked and parsed, ard
salient featuresof the meaning of the quedion are
extracied See Section 2 below for more detail.
(Retrieved documerts do not have this level of
aralysis appliedto them,)

¥ Document retrievd: AMS componerts have been
written for several IR engines Thes take the
reallts of the quedion aralysis and formulate a
series of queries for each quegionN Section 3
explains thisin more detail.

¥ Passage procesing: Afterthe retrieved documerts
pass through the commaon aralysis phas, Qanda
idertifies lexical relations between the words in
each sentence and those in the quedion (see
Secton 4). It also assigns a preliminary score to
eachsentence by summing the log-IDF (inverse
documert frequercy) of words common to the
senterce ard the quedion. Those sertenceswith a
low score are not procesed by most of the system,
improving the efficiency of more expersive
downstream componerts.

¥ Fixed repertoire taggers. In addition to named
entity tagging, we have a simple faciity for
constructing AMS taggers from fixed word- and
phrase-lists. Same of thes are used in quedion
aralysis to help determine the expectd arswer
type. Others re-tag mary named locatons more
specificaly as cities statedprovinces and
countries Qarnda also idertifies various other
(nearly) closed classes such as precious metals,
birthstones several anmal caegories (eg., state
bird), and so on (although thes latter are les
relevart to the more recen TREC QA
incarmations).



¥ Numeric tagging: A fixed repertoire taggeris run
on the retrieved passages to idertify words ard
phrasges denoting units of measire, and then a
simple pattern-based tagger combines thes with
numeric expressions to identify full-fledged
measire phrages aswell ascurrercy, percertages
and other numeric phrases

¥ Overlap: The quedion is compared to each
senterce, and a number of overlap features are
computed, somein temsof).

¥ Answer collecion and ranking: Cardidates are
identified and merged, a number of featres are
collecied, and a score is computed (Secton 4).

¥ Answer selection: A final component down-selects
the cardidates and gereraes the actual answer
strings. For factoid quedions, this is smply the
higheg-scoring phrasal cardidate, but definition
and list quedions require other procesing, as
detailedin Section 5.

All of thes components communicate by consuming
and producing stand-off amotations via AMS. A
separak declaraive facility is used to indicate which
components are interesed in consuming which
amotations, and AMS arrangesfor the componerts to
be connected appropriately.

2. Question ana lysis

In previous TREC evaluations, Qanda performed a
limited amalysis of the quedions. We tagged for part-
of-speech ard named entities and also applied a
simple fixed-repertoire tagger that maps headwords to
amswer types in QandaOsontology, using a set of
approximakely 6000 words amd phrases some
extracted heuistically from WordNet, some idertified
by hard. As of lag year, the system includes a
detailed parsng phas using MITREOs conditional
random field chunker Caréde (Wellner, 2005) and the
Pro3Gres deperdercy parser from the Universty of
Zurich (Schneider et al. 2004).

Pertaps due to the scarcty of quedions in standard
corpora, mary of our corpus-based tools require a
repair phase to address some of the more egregous
misinterpretations of quedions as declarafve
statemerns. For instance,it is not uncomman for a part
of speechtagger trained on declaraive data to attempt
to tag quedions like Who does John love? asif John
love is a noun-noun compound. We find aralogous
problemsin chunking and parsng aswell, which we
are able to correct to some extert using simple
heuristics.

Once these tagging phases are complete, QandaOs
quedion analysis component uses a set of structural
heuistics to identify the following agect of each
quegion:;

¥ Anchor: the object that the answer refers to. The
arswer may be the anchor, or it may be a property
(eg., length, color) or name of the anchor. The
archor will have a type and supertype from
QandaOgrather simple) ontology, eg., PERSON
and AGENT. The supertype is used as a backoff
for some statistics

¥ Property: the property, if any, of the anchor thatis
the actual amswer, e.g., the height of a mountain.
Properties also have a type ard supertype in
QandaOsntology.

¥ Name: the name, if any, of the anchor that is the
actual arswer. This case can arise in quedions
which require descriptive answers, asin Who is
Herry Kissinger?

¥ Answer redriction: an open-domain phrase from
the quedion that describes the archor, eg., first
woman in space.

¥ Superlative: Relevart adectvesfrom the quegion
redriction, eg., first, or fasted.

¥ Event: the main evert in the quedion, if any;
typicaly the main verb, unlessit issimply be.

¥ Salient ertity: What the quedion is OabutO.
Typically anamed entity, this correponds roughly
to the classical notion of topic, e.g., Matterhorn in
What is the height of the Matterhorn?

¥ Geographical and temporal redriction: Phrases
that can be interpreted asredricting the quegionOs
geophysical domain, or time period, eg., in
America, or in the nineteeth certury,
regpectvely.

Thes feaures are emitted as amotations on the
quedion, and are then availabe for down-stream
componentsto consume.

3. Docum ent r etri eval

The realts of quedion amalysis are pased to a
documert retrieval componertN for TREC this wasan
AMS wrapper around the Javarbased Lucene engine
(Apache 2002). This formulatesan IR query from the
guegion componerts described above with the goal of
retrieving documerts likely to amswer the quedion.
An ideal document would contain every term from the
quedion, in fact, every quedion componert as a full
phras. This is, of course, usually too much to hope



for, so Qanda begns with a redrictive query, but then
relaxes it until a target number of documerts is
retrieved, typically 50. Quedion componernts are
relaxed in a heuistic order that we arrived at through
trial and error, and new documerts are added to the
retrieval set until the target numberisreacked Thisis
similar to the first Ofeeback cycleO performed by
some of LCCOSTREC QA systems (Moldovan et al.
2002).

For examge, for question 143.4;

Who isthe senior vice presden of the American
Enterprise Institute ?

Qandaformulatesthe following initial query:

+Oerior vicepregdentO +GAmerican Enterprise
InstituteO

In LucereOsjuery syntax, the quotesindicat that only
the complete phrases should match, while the plus
signs require the phrasesto be presert. Such a query
retrieves only documerts containing both exact
phraeedN there are apparertly only four such
documerts in the AQUAINT cdlection, so another
round of retrieval is attempted, with awealer query:

serior vicepresdert Ognor vicepresdenO
+QAmerican Enterprise InstituteO

This query still requires the topic phrase, as that is
deened most importart, but has weakened the
requirements on the other phraeN the words can
appearindividually, and in fact none of the words need
appearin a retrieved documert. The ertire phrase is
still retained as optional, as Lucere will more highly
rark documerts containing the phrase.

The second, weakened query retrieves 350 documerts,
and the system greedly adds novel documerts to the
reault set from the original query. When the target
number of documerts is reached, the cycle of query
relaxation stops, and the documerts are passed to the
red of the system In this ca, if necessary, a fully
weakened query would have beenused

serior vicepreddert Orior vice presdentO
American Enterprise Institute QAmerican
Enterprise InstituteO

LucereOsquery syntax also allows weighted tems,
ard in actuality, Qanda usesdiff erert weights for each
gquegion componert, even when weakened Like the
relaxation order, thes weights were amrived at
heuistically, and only a smal portion of the full query
spaceis explored by Qanda. Idealy, we would like to
auomaically acqiire the weights, relaxation order,
etc., so asto optimally traverse this space.

4. Answ er ranking

The retrieved documerts are then examined by a
number of taggersand other procesors. As indicated
in the overview, most componerts of Qarnda skip
sentercesthat do not suffi ciertly match the quegion,
based on an IDF-weighted overlap threshold. This
year we lowered this threshold substartially so that,
effectively, every sertence containing at leag one
contert word from the quedion is fully procesed
Qanda collects cardidate answershy gathering phrasal
amotations from all of the semartic taggers ard
idertifies a number of featres for each cardidate.
Thes are combined using a conditional maxmum-
ertropy model trained from pags TREC QA data sets.
Seweral TREC participarts have used this approach
eg., Ittycheriahetal (2001).

Answer candidate features

Many of the featuresusedin the maxert model reflect
particular kinds of overlap between the quegion ard
the context in which the cardidate answer is found:

¥ ContextIDF Overlap: De<ribed above.

¥ Context Unigram and Bigram Overlaps. Raw
counts of words/bigrams in common with the
quegion.

¥ Context Quedion Componert Ovedaps: Raw
counts of words from various componerts of the

quegion (seeSecton 2).

¥ Context Wordnet Overdap: Raw counts of words
that could be synonyms, hypernyms etc. of
quegions words. Count featuresfor mast Wordnet
relations (Fellbaun 1998) areused

A number of features are computed based on the
cadidate itself, or its locaion in the context sertence:

¥ Candidate Overdap: Raw count of words in
common between the cardidate itself and the
quedion, to biasagainst ertitiesfrom the quegion
being chosenasarswers

¥ Candidate Overlap Distance Number of
charecters between the cardidate and the closed
(contert) quedion word in the context.

¥ Candidate Quedion Component Distances
Number of characters betweenthe cardidate and
various componerts of the quedion found in the
cardidate context.

ANl of the Gaw countOfeatures described in this section
omit stop words.



Question expected Candidate
answer type type

PERSON ORGANIZATION
PERSON COUNTRY
NAME PERSON
NAME ORGANIZATION
NAME LOCATION
CITY LOCATION
DATE YEAR
DATE YEAR
ORGANIZATION other
AMBIGLONG DURATION
AMBIGLONG LENGTH
AMBIGBIG LENGTH
AMBIGFAST SPEED
MEASURE MASS
MEASURE MONEY
MEASURE MISCMEA SURE
MEASURE other
QUANTITY PERCENT
unknown LOCATION
unknown ORGANIZATION
unknown PERSON

Figure 1. Type-pair features used in evaluating
answer candidates

Cardidates from the same document with the same
textual realzatons are merged with the combined
cardidate retaining the bed value for each feature.
Thisis the extert of QandaOsandidate combinationN
no corefererceis currertly performed We use several
cross-cardidate features

¥ Merge Count: (log of) count of idertical
cardidatesmergedtogether.

¥ Answer similarity: Average characterlevel
similarity betweenthis cardidate and all others

The latter feature allows textually similar cardidatesto
OwteOfor each other, allowing, for example, January,
1964 and Jan 64 to support each other without
requiring any explicit coreference. We have also used
such an approach to combine amnswers from multiple
QA systems(Burger & Henderson, 2003).

A number of booleanfeatures are also computed that
compare the quegionOsxpecied answer type with the
semaric type of the cardidate:

¥ Type Same: True if the cardidate and expected
arswertypesareidertical.

¥ Type Consistert: True if the cardidateOgype is
OsmilarCto the expected arswer type.

¥ Type-Pair: This is a series of features
correponding to selected pairs of consistert types
(seebelow).

For the most part, cardidatesareonly consideredfor a
quedion if their types are consistert. For examfde,
Where quedions leadto an expected amswer type of
LOCATION, which is consistert with LOCATION,
CITY and COUNTRY cardidates How much quegions
leadto QUANTITY, consistent with PERCENTAGE.

Idealy, Qanda would consider all cardidates for all
quedions, but, if nothing else, performance
consideratons justify limiting this. We do not even
repreent all consistent pairs as explicit features
Instead we use a small set of approximately 20
combinations chosenby hand, asindicatedin Figure 1.
Thes represent particular biases or preferences that
we feel justified in trying to acauire from the training
data. In addition, some of thes pairwise features
represernt excegions to the consistercy requiremen,
eg., PERSON is not consistert with COUNTRY, but
we wish to consider such cardidates anyway, as the
latter can sometimes amswer gquedions such Who
started the six-day war?  Similarly, we wish to
consider cerain named ertity types as cardidates
even when quedion aralysis was unsuccessful in
divining anexpected answer type (unknown).

After all of the (merged) candidates have been
acquired most of the raw feature values de<ribed
above are normalized with regect to the maxmum
acress all cardidatesfor a particular quedion, reaulting
in valuesbetween0 and 1. We have previously found
that feaures normalized in this way are more
commersurate acrass quedions (Light etal. 2001).
This yea we also explored unit Gauwssian
normalizaion, as well as quartile normalizaion, but
found realts to be inconclusive. All of our official
TREC runs simply used max-value-per-quegion
normalizaion.

Maximum entropy models

The normalized featres are combined using the
weights assigned by a maxent model during training.
This yea, we trained the model using the quedion sets
from TREC 1999 through 2004, including the 2001 list
quedions ard the 25 AQUAINT definition evaluation
quedions. Lag yeaOsquedions (TREC 2005) were
used as a developmert set, although for our final run
(MITRE2006D) we included this developmert datain
the training. We used the MegaM package (DaumZ
2004) to train these models.

In previous yeas we have struggled with a number of
issues involving training this part of the system, for



examde, the quedion of how to normalize feaure
valuesdiscussed above. Otherissuesarise becatse we
are using a fairly smal data setN there are arguaby
too few positive instancesto acquire adequate feaure
weights, egecially if we are interesed in feaure
combination (our training data s typicaly 98£99%
necative instarcey. Lad year,we experimerted with
forcing Qanda to consider all correct amswers (as
defined by NISTOsjudgmert sets) during training,
even those the system would ordinarily not examine,
but ultimately found this to produceinferior reaults.

This yea we spert some time exploring the problems
involved in using a discriminative model such as
maxert to rark candidates We encountereda number
of cases of feature additions or other modification to
the system that decreagd the maxert modelOs
edimaton errar, but had negative effects on its
rarking ahility. This is frustrating, but perhaps
undergardableN MegaM is choosing feature weights
to maximize the likelihood of all of the data, but we
arein fact only interesed in the candidate that rarks
higheg using the reaulting probahility egimat.

For mary quedgions, thereare multiple correct arswer-
documert pairsN some are harder than others for the
model to OpstifyO. In a serse, we would like the
model to focus on those correct arswers that it can
more easly rark highly, possibly at the experse of
other correct but more Odiffi cultO cardidates in the
context of a particular quegion. MegaM in fact hasa
simply facility for weighting someinstancesmore than
others and we used this to perform a crude form of
Oaswer boostingO. Our procedure is thus: we first
train a maxent model from the training data, and then
use this to rark all of the training armswers for each
quedion. Then, within a quedion, we weight the top n
instanceswith a weight w (greatr than 1), and retrain
the model. This second model isthenused at runtime.

Again, the intuition is to force the model to focus on

those correct cardidates that can alread/ be rarked
fairly highly. Similarly, we wish to focus on those
incorrect cardidates that are confusalde with the beg

correct cardidates We are willing to OsaificeO
poorly rarked cardidates if at leas one correct
cardidate per quegion can be rarked highly. We

typicaly used values of 100 and 2 for n and w,

repectvely, and found that this ad hoc procediure
could consistertly improve our factoid scores by

roughly ten perce, relative. Our TREC runs, A ard

C differ only in whether this boosting was performed
(seeFigure 3).

5. Definition qu estions

Qanda has no real facility for procesing definition
(other) quedions as such. Instead we leverage our
factoid quedion procesing, which for the most part
only considers named and other ertities as cardidate
ammswers Of course, very few definition amswers
correspond directly to named ertities per se, but we
have noticedthat cerain kinds of hamedentitieswere
involved with some definition answers asindicatedin
the example below:

Who is Gunter Blobel?

Is at Rockefeller University

1999 Nobel prizein Medcine

was bornin 1936

was born in Waltersdorf, Slesa, Germany

In a serse, while named ertities alone might not
constitute good definition nuggets, they form the
OlerrelOof mary nuggets. QardaOsjuegion aralysis
component can alread/ idertify the semaric type of
the definition target (eg., PERSON, alove). Since
definition amswers do not needto be exact, we allow
Qanda to consider certin ertity types as pseudo-
armswersto definition quedions. Then, at the end, the
actual definition text is constructed from the matrix
senterces in which thes pseudo-answers are found
(seeSecton 6).

We used the type-pair features described in Section 4
to licerse cerain combinations of definition target
type and cardidate type, as shown in Figure 2.
Additionally, we inject some non-ertity cardidates
using crude heuistics for idertifying short fragmerts
occuring in appositional contexts. Our hope is that
the type-pair features as well asthe cardidate count
feature, allow the system to find some definition
armswers As training data, we use the explicit other

quedions from recen TRECs the AQUAINT
Definition Candidate
target type type
PERSON DATE
PERSON YEAR
PERSON PERSON
PERSON LOCATION
PERSON COUNTRY
PERSON fragment
ORGANIZATION LOCATION
ORGANIZATION COUNTRY
ORGANIZATION PERSON
ORGANIZATION fragment
unknown fragment

Figure 2: Type-pair features used in evaluati ng
definition pseudo-answers



definition quedions, and a number of quegions from
previous years that we determined were essertially
definition quedions.

6. Final answ er generation

Most of QardaOprocessing is independert of whether
the quedion is factoid, list, or other. One exception is
the fragmert pseudo-answers generaed for definition
quedgions, another is that the quegion type is, in fact,
availabe as a feature to the maxent scoring model.
Otherwise, however, the system performs the same
procesing on all quedions, until the very lag stage,
actual arswer string gereraton. Special procesing is
required to gererate both definition (other) and list
answers

List quedions gererak a set of short (factoid) answers
while definition quedions are a set of full sentences
containing the cardidate pseudo-answers desribed
above. Earlier versions of Qanda simply picked the
top n cardidate answers with fixed cutoffs for list ard
definitions. For sewveral years we have used
something slightly more sophisticaiedN the system
determinesthis cutoff dynamically so asto maximize
the expected score for each quedion.

The badc ideatakes advartage of QardaOsardidate
evaluaon mectarismN since the maxert model
produces probahility edimates for the correcness of
eachindividual amswer, we can use thes to rea®n
about the expected value of the score an ertire arswer
set might receie. Our algorithm for gererating list ard
definition amswersis thus to greedly add eachof the
rarked cardidates to an answer set in turn, stopping
whenthe expected score appeasto decrease.

The expected score of anarswer set of course depends
on the scoring metric to be used. Both list ard
definition quedions are scored with variants of F-
measire, the weighted hamrmonic mean of precision
ard recall:

_("+1)PR
~ "P+R

P is precision, the fraction of our gereraed arswers
that are correct, while R is recall, the fraction of all
possible correct amswers that we gererated " is a
weight used to place more emphass on either
precision or recal. For list quedions, NIST weighted
P and R evenly, and so the evaluation simply reduces
to the following:

2c

F
n+r

list —

"

For definition quegions, is set to three, and
precision is approximated with alength penalty:

_ 10PR

T 9P+R
®=min(L.0 100c/l)
R=cl/r

In both Fgg and Fjg, ¢ is the number of correct
arswerdN either the number of distinct list answers
judged correct, or the number of correctnuggets found
in adefinition armswer. r is the total number of correct
arswers possible, accading to the NIST assessors.
For list quedions, n is the total number of arswers
gereraked, and for definition quedions, | is the total
length of anarswer.?

def

Basd on thee equations, Qanda can egimat the
expected score of ananswer set. We edimat c asthe
sum of the maxent scoresfor the answers in the set. It
remains to esimate r, the number of correct amnswers
possible. This is, of course, diffi cult,® and so we
simply use a fixed value, in this cas the mears from
lag yearOdata.

lig = 12
Idef = 4

For list quedions, we add each factoid-style answer to
the amswer set in turn, incremerting n by 1 with each
as long as F;g increags Similarly, for definition
quedions, we add each pseudo-answers matrix
serterce to the arswer set, incremerting the length |
appropriately, aslong asFg continuesto increa®.

7. Submit ted runs and r esults

This year we submitted three variart runs (see Figure
3). Run A is from a basc system, with the features
dexcribed above. Run C differs only in that the
cardidate scoring model has been Olwosted) as
dexcribed in Secton 4N the roughly ten percer
improvemert is similar to what we saw with our
developmert data. It is unclearwhy the evaluation list
quedions appear to be unaffected by the boosting.
Run D differsmainly in that our developmert set has
been added to the training set, namey, lag yearOs
quedions.  This did not include, however, the

“Qanda ignores the distinction between inessential and
essential correct nuggets.
%David Lewis (personal communication) has suggested
using the sum of scores over all answer candidates for a
particular question as an estimate for r, but we have found
this to worsen our results.



Run Factoid List Other  Overall
A 0.181 0.083 0.136 0.130
C 0.208 0.083 0.156 0.149
D 0.208 0.087 0.131 0.139
Median  0.186 0.027 0.125 0.134
Best 0.578 0.433 0.250 0.394

Figure 3: Reallts for three MI TRE runs, as well
as median and beg across all 2006 submissions

definition quedions, perhaps accainting for run DOs
lossinthisarea.

8. Conclusion

As well asthe usual decription of this yearOsystem
architecure, we have discussed QandaOsquedion
aralysis and our use of maxmum entropy models for
arswer selection, in particular a metod for boosting
such models to better support TRECOswinner-take-all
evaluation. We believe that this ad hoc method has
some connections to minimum-risk ameaing (Smith
& Eisner, 2006) and would like to explore this in the
future. We de<ribed the query relaxation tecmique
that Qanda usesin anattemp to improve the documert
retrieval phase of the systemN we would like to use a
more principled exploration of the query space for
retrieval. Finally, we presnted our approach to
gereraing definition and list arswer sets hy
max mizing the expected score eachset will receive.
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